Constant Acceleration Cheat Sheet

Displacement-time graphs

- Displacement is always plotted on the vertical axis and time on the horizontal axis.
- In these graphs s represents the displacement of an object from a given point in metres and t represents the time taken in seconds.

- No change in displacement over time
- Object is
stationary

t (s)
- Displacement increases at a constant rate over time
- Object is moving with constant velocity

$\xrightarrow[t(\mathrm{~s})]{\longrightarrow}$
- Displacement is increasing at greater rate as time increases
- Velocity is increasing and object is accelerating

Velocity is the rate of change of displacement. Gradients of displacement-time graphs represent velocity

Average velocity $=\frac{\text { displacement from starting point }}{\text { time taken }}$
Average speed $=\frac{\text { total distance travelle }}{\text { time }}$

Velocity-time graphs

- Velocity is always plotted on the vertical axis and time on the horizontal axis.
- In these graphs v represents the velocity of an object in metres per second and t represents the time taken in seconds.

Object is

Object is
stationary

$t(\mathrm{~s})$
Object moves with constant velocity
$v\left(\mathrm{~ms}^{-1}\right)$

$t(\mathrm{~s})$
Object moves with increasing velocity at a increasing velocity at a constant rate (ie. constant acceleration)

Acceleration is the rate of change of velocity, represented by gradients of velocity-time graphs. The area under the graph of velocity time graph represents distance travelled.

Example 1 : The figure shows a velocity-time graph illustrating the motion of a cyclist for a period of 12 seconds. She moves at a constant speed of $6 \mathrm{~ms}^{-1}$ for the first 8 secs. She then decelerates at a constant rate, stopping after a further 4 secs.
a. Find the displacement from the starting point of the cyclist after this 12 secs period.

Displacement = area under the graph

$$
\begin{aligned}
s & =\frac{1}{2}(a+b) h \\
& =\frac{1}{2}(8+12) 6 \\
& =10 \times 6=60 \mathrm{~m}
\end{aligned}
$$

b. Work out the rate at which the cyclist decelerates.

Acceleration is the gradient of the slope. Find the deceleration between 8 s to 12 s .

$$
\begin{aligned}
a & =\frac{0-6}{12-8} \\
& =\frac{-6}{4}=-1.5 \mathrm{~ms}^{-2}
\end{aligned}
$$

Constant acceleration formulae 1

A standard set of letters is used for the motion of an object moving in a straight line with
constant acceleration.

- s is the displacement
- u is the initial velocity
- v is the final velocity
- a is the acceleration
- t is the time
- $a=\frac{v-u}{t}$

Rearrangement of the equation above gives us:
-v=u+at

$$
\boldsymbol{S}=\left(\frac{\boldsymbol{u}+\boldsymbol{v})}{2}\right) \boldsymbol{t} \quad \text { shaded area }=\quad \text { displacement }
$$

The formulae in the red box are often used to solve any questions. Choosing the appropriate formulae depends on which information is given by the question.

Example 2: A cyclist is travelling along a straight road. She accelerates at a constan rate from a velocity of $4 \mathrm{~ms}^{-1}$ to velocity of $7.5 \mathrm{~ms}^{-1}$ in 40 seconds. Find:
a. The distance she travels in these 40 seconds

b. Her acceleration in these 40 seconds $v=u+a t$
$7.5=4+a(40)$
$a=\frac{7.5-4}{40}=0.0875 \mathrm{~ms}^{-2}$

Constant acceleration formulae 2

You can derive another 3 formulae from the previous formulae $v=u+a t$ and $s=\left(\frac{u+v}{2}\right) t$. This will give you another 3 formulae which are:

- $v^{2}=u^{2}+2 a s$
- $s=u t+\frac{1}{2} a t^{2}$

You need to know how these formulae are derived

- $s=v t-\frac{1}{2} a t^{2}$

Example 3: A particle is moving from A to B with constant acceleration $5 \mathrm{~ms}^{-2}$. The velocity of the particle at A is $3 \mathrm{~ms}^{-1}$ in the direction of A to B. The velocity of the particle at B is $18 \mathrm{~ms}^{-1}$ in the same direction. Find the distance from A to B.

$$
\begin{aligned}
v^{2} & =u^{2}+2 a s \\
18^{2} & =3^{2}+2(5) \times s \\
324 & =9+10 s \\
s & =\frac{324-9}{10} \\
s & =31.5 \mathrm{~m}
\end{aligned}
$$

Vertical motion under gravity

When an object is free falling (moves down vertically under gravity) towards the earth, the acceleration is constant, independent of the weight/mass of the object. gnoring the air resistance, any object which falls under gravity or in vacuum will have an acceleration due to gravity which is often represented as $g=9.8 \mathrm{~ms}^{-2}$. A downward vertical motion has a positive g value while an upward motion caused by gravity (eg. an object bouncing upward) will have $g=-9.8 \mathrm{~ms}^{-2}$. The negative value indicates that the object is moving an opposite direction (upwards) from the gravity.

